Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(701): eabq7839, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37343080

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiopatías , Animales , Niño , Humanos , Ratones , Arritmias Cardíacas , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Pirazoles/farmacología
3.
bioRxiv ; 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36712017

RESUMEN

Ca 2+ is a fundamental determinant of survival in living cells. Excessive intracellular Ca 2+ causes cellular toxicity and death but the genetic pathways contributing to Ca 2+ induced cell death are incompletely understood. Here, we performed genome-wide CRISPR knock-out screening in human cells challenged with the Ca 2+ ionophore ionomycin and identified genes and pathways essential for cell death after Ca 2+ overload. We discovered 115 protective gene knockouts, 82 of which are non-essential genes and 21 of which belong to the druggable genome. Notably, members of store operated Ca 2+ entry (SOCE), very long-chain fatty acid synthesis, and SWItch/Sucrose Non-Fermentable (SWI/SNF) pathways provided marked protection against Ca 2+ toxicity. These results reveal pathways previously unknown to mediate Ca 2+ -induced cell death and provide a resource for the development of pharmacotherapies against the sequelae of Ca 2+ overload in disease.

4.
Annu Rev Pharmacol Toxicol ; 63: 249-272, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35973713

RESUMEN

CaMKII (the multifunctional Ca2+ and calmodulin-dependent protein kinase II) is a highly validated signal for promoting a variety of common diseases, particularly in the cardiovascular system. Despite substantial amounts of convincing preclinical data, CaMKII inhibitors have yet to emerge in clinical practice. Therapeutic inhibition is challenged by the diversity of CaMKII isoforms and splice variants and by physiological CaMKII activity that contributes to learning and memory. Thus, uncoupling the harmful and beneficial aspects of CaMKII will be paramount to developing effective therapies. In the last decade, several targeting strategies have emerged, including small molecules, peptides, and nucleotides, which hold promise in discriminating pathological from physiological CaMKII activity. Here we review the cellular and molecular biology of CaMKII, discuss its role in physiological and pathological signaling, and consider new findings and approaches for developing CaMKII therapeutics.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Arritmias Cardíacas , Sistema Cardiovascular/metabolismo , Transducción de Señal/fisiología
5.
Nature ; 594(7861): 26, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34075242
6.
Circulation ; 143(17): 1687-1703, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33593071

RESUMEN

BACKGROUND: Heart failure is a leading cause of death worldwide and is associated with the rising prevalence of obesity, hypertension, and diabetes. O-GlcNAcylation (the attachment of O-linked ß-N-acetylglucosamine [O-GlcNAc] moieties to cytoplasmic, nuclear, and mitochondrial proteins) is a posttranslational modification of intracellular proteins and serves as a metabolic rheostat for cellular stress. Total levels of O-GlcNAcylation are determined by nutrient and metabolic flux, in addition to the net activity of 2 enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Failing myocardium is marked by increased O-GlcNAcylation, but whether excessive O-GlcNAcylation contributes to cardiomyopathy and heart failure is unknown. METHODS: We developed 2 new transgenic mouse models with myocardial overexpression of OGT and OGA to control O-GlcNAcylation independent of pathologic stress. RESULTS: We found that OGT transgenic hearts showed increased O-GlcNAcylation and developed severe dilated cardiomyopathy, ventricular arrhythmias, and premature death. In contrast, OGA transgenic hearts had lower O-GlcNAcylation but identical cardiac function to wild-type littermate controls. OGA transgenic hearts were resistant to pathologic stress induced by pressure overload with attenuated myocardial O-GlcNAcylation levels after stress and decreased pathologic hypertrophy compared with wild-type controls. Interbreeding OGT with OGA transgenic mice rescued cardiomyopathy and premature death, despite persistent elevation of myocardial OGT. Transcriptomic and functional studies revealed disrupted mitochondrial energetics with impairment of complex I activity in hearts from OGT transgenic mice. Complex I activity was rescued by OGA transgenic interbreeding, suggesting an important role for mitochondrial complex I in O-GlcNAc-mediated cardiac pathology. CONCLUSIONS: Our data provide evidence that excessive O-GlcNAcylation causes cardiomyopathy, at least in part, attributable to defective energetics. Enhanced OGA activity is well tolerated and attenuation of O-GlcNAcylation is beneficial against pressure overload-induced pathologic remodeling and heart failure. These findings suggest that attenuation of excessive O-GlcNAcylation may represent a novel therapeutic approach for cardiomyopathy.


Asunto(s)
Muerte Súbita/patología , Insuficiencia Cardíaca/fisiopatología , N-Acetilglucosaminiltransferasas/efectos adversos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos
7.
Nat Commun ; 11(1): 4416, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887881

RESUMEN

Despite the clear association between myocardial injury, heart failure and depressed myocardial energetics, little is known about upstream signals responsible for remodeling myocardial metabolism after pathological stress. Here, we report increased mitochondrial calmodulin kinase II (CaMKII) activation and left ventricular dilation in mice one week after myocardial infarction (MI) surgery. By contrast, mice with genetic mitochondrial CaMKII inhibition are protected from left ventricular dilation and dysfunction after MI. Mice with myocardial and mitochondrial CaMKII overexpression (mtCaMKII) have severe dilated cardiomyopathy and decreased ATP that causes elevated cytoplasmic resting (diastolic) Ca2+ concentration and reduced mechanical performance. We map a metabolic pathway that rescues disease phenotypes in mtCaMKII mice, providing insights into physiological and pathological metabolic consequences of CaMKII signaling in mitochondria. Our findings suggest myocardial dilation, a disease phenotype lacking specific therapies, can be prevented by targeted replacement of mitochondrial creatine kinase or mitochondrial-targeted CaMKII inhibition.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatía Dilatada/metabolismo , Infarto del Miocardio/fisiopatología , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/fisiopatología , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/cirugía , Transducción de Señal
8.
Am J Physiol Gastrointest Liver Physiol ; 316(3): G350-G365, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30629468

RESUMEN

Difficulty in imaging the vertebrate intestine in vivo has hindered our ability to model nutrient and protein trafficking from both the lumenal and basolateral aspects of enterocytes. Our goal was to use live confocal imaging to increase understanding of intestinal trafficking of dietary cholesterol and apolipoprotein A-I (APOA-I), the main structural component of high-density lipoproteins. We developed a novel assay to visualize live dietary cholesterol trafficking in the zebrafish intestine by feeding TopFluor-cholesterol (TF-cholesterol), a fluorescent cholesterol analog, in a lipid-rich, chicken egg yolk feed. Quantitative microscopy of transgenic zebrafish expressing fluorescently tagged protein markers of early, recycling, and late endosomes/lysosomes provided the first evidence, to our knowledge, of cholesterol transport in the intestinal endosomal-lysosomal trafficking system. To study APOA-I dynamics, transgenic zebrafish expressing an APOA-I fluorescent fusion protein (APOA-I-mCherry) from tissue-specific promoters were created. These zebrafish demonstrated that APOA-I-mCherry derived from the intestine accumulated in the liver and vice versa. Additionally, intracellular APOA-I-mCherry localized to endosomes and lysosomes in the intestine and liver. Moreover, live imaging demonstrated that APOA-I-mCherry colocalized with dietary TF-cholesterol in enterocytes, and this colocalization increased with feeding time. This study provides a new set of tools for the study of cellular lipid biology and elucidates a key role for endosomal-lysosomal trafficking of intestinal cholesterol and APOA-I. NEW & NOTEWORTHY A fluorescent cholesterol analog was fed to live, translucent larval zebrafish to visualize intracellular cholesterol and apolipoprotein A-I (APOA-I) trafficking. With this model intestinal endosomal-lysosomal cholesterol trafficking was observed for the first time. A new APOA-I fusion protein (APOA-I-mCherry) expressed from tissue-specific promoters was secreted into the circulation and revealed that liver-derived APOA-I-mCherry accumulates in the intestine and vice versa. Intestinal, intracellular APOA-I-mCherry was observed in endosomes and lysosomes and colocalized with dietary cholesterol.


Asunto(s)
Apolipoproteína A-I/efectos adversos , Colesterol en la Dieta/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Animales , Transporte Biológico/fisiología , Colesterol/metabolismo , Enterocitos/metabolismo , Intestinos/fisiología , Lipoproteínas HDL/metabolismo , Transporte de Proteínas/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...